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Abstract

We formally define a concept of functional cointegration linking the dynamics of two

time series via a functional coefficient. This is achieved through the use of a concept of

summability as an alternative to I(1)’ness which is no longer suitable under nonlinear dy-

namics. We subsequently introduce a nonparametric approach for estimating the unknown

functional coefficients. Our method is based on a piecewise local least squares principle

and is computationally simple to implement. We establish its consistency properties and

evaluate its performance in finite samples.
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1 Introduction

A vast body of research in the recent time series econometrics literature has concentrated on

developing methods of capturing nonlinear regime specific behaviour in the joint dynamics link-

ing economic and financial variables. An important complication that arises when moving from

simple linear structures with constant coefficients to such models with nonlinear dynamics has

to do with the open ended nature of the functional forms one may want to adopt for describing

the changing nature of the model parameters and underlying moments. Popular parametric

specifications include the well known threshold models, Markov switching models, models with

structural breaks among numerous others. Although such models can allow researchers to cap-

ture rich and economically meaningful nonlinearities the ad-hoc nature of the functional forms

may also be seen as problematic. An alternative to having to take a stand on a particular

functional form is to instead allow the changing coefficients to be described by some unknown

function to be estimated from the data as for instance in y = f(q)x + e. Such semiparametric

specifications are commonly referred to as varying or functional coefficient models and were in-

troduced in the early work of Cleveland, Grosse and Shyu (1991), Hastie and Tibshirani (1993),

Chen and Tsay (1993), Fan and Zhang (1999) amongst numerous others (see also Fan and Yao

(2003) and references therein). An important motivation underlying this class of models is their

ability to capture rich dynamics in a flexible way while at the same time avoiding the curse of

dimensionality characterising fully nonparametric specifications.

Our initial objective in this paper is to formally define a novel concept of functional coin-

tegration linking two highly persistent variables via functional coefficients. Our framework is

analogous to the well known linear cointegration property linking I(1) variables except that

in the present nonlinear framework I(1)’ness is no longer suitable for describing the stochastic

properties of our variables. Our work also falls within the bounds of the very recent literature

on nonlinear cointegration tackled from a purely nonparametric point of view (Karlsten, Myk-

lebust and Tjostheim (2007), Wang and Phillips (2009), Kasparis and Phillips (2009) amongst

others). Note that the idea of a nonlinear long run equilibrium relationship (attractor) was also

put forward in the early work of Granger and Hallman (1989), Breitung (2001), Saikkonen and

Choi (2004) amongst others.

The most common way of estimating the unknown functions of such varying coefficient

models is through kernel smoothing and local polynomial techniques. These typically reduce to

a weighted least squares type of objective function with the weights dictated by some chosen

kernel function. Our subsequent objective in this paper is to propose an alternative estimation

approach based on a piecewise linear least squares principle and to obtain its properties within

our nonstandard context that allows for the presence of a unit root variable as in the recent

work of Juhl (2009), Xiao (2009) and Cai, Li and Park (2009). Our method is different from
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kernel smoothing based methods, does not generally require the differentiability of the density

of q and is shown to have good finite sample properties.

The plan of the paper is as follows. Section 2 introduces and motivates our model and

formally defines the concept of functional cointegration. Section 3 describes our estimation

methodology and derives its asymptotic properties. Section 4 explores its performance and

finite sample. Section 5 concludes. All proofs are relegated to the appendix.

2 The Model and Motivations

We consider the following functional coefficient regression model

yt = f0(qt−d) + f1(qt−d)xt + ut (1)

xt = xt−1 + vt (2)

where ut and vt are stationary disturbance terms and f0(qt−d) and f1(qt−d) are unknown functions

of the stationary scalar random variable qt−d while xt is taken as an I(1) process throughout.

The particular choice of d is not essential for our analysis and will be set at d = 1 throughout.

The generality of (1)-(2) can be seen by noting that it can easily be specialised to well known

parametric specifications such as threshold effects as in fi(qt−1) = βi1I(qt−1 ≤ γ)+βi2I(qt−1 > γ)

(see Gonzalo and Pitarakis (2006)) or ESTAR/LSTAR type of variants such as fi(qt−1) =

[1 + e−γi(qt−1−ci)]−1 amongst others.

Before proceeding with the estimation of the unknown functions f0(q) and f1(q) it is impor-

tant to motivate our model in (1)-(2) as a long run equilibrium relationship. As it stands (1)

cannot be interpreted as a stationary nonlinear combination of I(1) variables in a traditional

sense. Indeed, it is easy to see that although xt is a standard I(1) process, yt can no longer

be viewed as I(1) as it would have been the case for instance if f0(q) and f1(q) were constants.

Differently put, the concept of integratedness of order 0 or 1 is mainly relevant within a linear

framework while not being very helpful when dealing with nonlinear transformations of vari-

ables. In the context of our model in (1) for instance it is straightforward to see that first

differencing yt will not result in a stationary process because of the time varying nature of the

functional coefficients.

To gain further insight into this phenomenon consider a simplified version of (1) which we

compactly write as yt = ftxt + ut and with ft denoting some stationary process. It is now clear

that ∆yt = ft∆xt+xt−1∆ft+ ∆ut making it difficult to view ∆yt as a stationary process due to

the presence of the term xt−1∆ft which has a variance that grows with t. Instead, cointegration

in the context of (1) is understood in the sense that although yt and xt have variances that grow

with t, the functional combination given by ut is stationary.

2



Because of these conceptual difficulties and for the purpose of motivating (1)-(2) we propose

to use the concept of Summability as an alternative to the concept of I(1)’ness and which

was proposed in Gonzalo and Pitarakis (2006) and more recently refined and formalised in

Berenguer-Rico (2010) and Berenguer-Rico and Gonzalo (2011). A time series yt is said to

be summable of order δ, symbolically represented as Sy(δ), if the sum Sy =
∑T

t=1(yt − dt) is

such that Sy/T
1
2
+δ = Op(1) as T → ∞ and where dt denotes a deterministic sequence. Note

that in the context of this definition, a process that is I(d) can be referred to as Sy(d) and

the functional process introduced in (1) is clearly Sy(1) as discussed further below. Using this

concept of summability of order δ we can now provide a formal definition of the concept of

functional cointegration as follows

Definition (Functional Cointegration): Let yt and xt be Sy(δ1) and Sy(δ2) respectively. They

are functionally cointegrated if there exists a functional combination (1,−f1(qt−1)) such that

zt = yt − f1(qt−1)xt is Sy(δ0) with δ0 < min(δ1, δ2).

Given the formal definition of functional cointegration presented above it is now clear that

within our specification in (1), yt and xt are functionally cointegrated with δ0 = 0 and δ1 =

δ2 = 1. This follows from the fact that taking ut and qt to be stationary processes ensures that∑
yt/T

3/2 = Op(1) while ut is such that
∑
ut/
√
T = Op(1) as clarified further below. It is also

worth highlighting the fact that within our specification in (1) we have zt = f0(qt−1)+ut which is

of the same order of magnitude as ut since under our assumptions we will have
∑
f0(qt−1)/T

p→
E[f0(qt−1)] and

∑
f0(qt−1)/T

3/2 = op(1).

Having provided a rationale for our specification in (1)-(2) we next concentrate on obtaining

reliable estimates of the unknown functional coefficients f0(q) and f1(q) and exploring their

consistency properties. For this purpose we introduce a piecewise linear estimation approach as

developed in Banerjee (1994, 2007) in the context of average derivative estimation and adapt

it to the nonstationary functional coefficient setting given by (1)-(2). This will also allow us to

compare our approach with the more commonly used kernel smoothing approaches.

3 Piecewise Local Linear Estimation

We now concentrate on the estimation of the unknown functional coefficients linking yt and

xt. We propose to do that through a piecewise local linear procedure recently used in Banerjee

(1994, 2007) in the context of average derivative estimation. We partition the support of qt−1

into k disjoint bins of equal length |Hr| = h, r = 1, . . . , k (note that qt−1 is not sorted in

any particular order). For every qt−1 falling in the rth bin we then fit the least squares line

yt = β0r + β1rxt + ut connecting the {yt, xt} data within the bin. More specifically, letting

x̃t = (1, xt)
′ and Ir(qt−1) ≡ I(qt−1 ∈ Hr) = 1 if qt−1 falls within the rth bin and zero otherwise
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and βr = (β0r, β1r)
′ we write

β̂r = S(r)
xx
−1S(r)

xy (3)

where S
(r)
xx =

∑T
t=1 x̃tx̃

′
tIrt−1 and S

(r)
xy =

∑T
t=1 x̃tytIrt−1 with Irt−1 ≡ Ir(qt−1). Note that β̂r

provides the least squares estimators of the intercept and slope parameters characterising the

linear regression line within each bin. Interestingly, in a series of recent papers, Senturk and

Mueller (2005, 2006) also used an estimation technique similar to what we consider below in an

unobserved variable setting under iid’ness and in which observed and unobserved variables are

linked through functional coefficients.

Once the β̂r’s have been estimated within each bin, our estimator of the functional coefficients

is then given by

(f̂0(q), f̂1(q)) =

(
k∑
r=1

β̂0rIr(q),
k∑
r=1

β̂1rIr(q)

)
(4)

with Ir(q) = I(q ∈ Hr).

Having introduced the mechanics behind our estimator our main goal is to establish its

consistency. Since in this nonstationary setting consistency typically holds under minimally

restrictive assumptions that can accomodate serial correlation and/or endogeneity we proceed

and operate under a broad set of assumptions. The following baseline assumptions will be

maintained throughout the entire paper where we let qt = µ+ uqt.

Assumptions A. (i) wt = {ut, vt, uqt} is such that E[wt] = 0, E||w0||ρ+ε < ∞ for some ρ > 2

and the sequence {wt} is strictly stationary, strong mixing with mixing coefficients αm such that∑
α
1−2/ρ
m <∞. (ii) The density of q denoted gq(q) is strictly positive and satisfies supq gq(q) <

c < ∞ and infq gq(q) > c > 0. (iii) gq(q) has compact support. (iv) The functional coefficients

are twice continuously differentiable in q.

Assumptions A above impose a very standard set of restrictions on the dynamics driving (1)-(2)

leaving all random disturbances to be flexible enough to display rich dynamics such as ARMA

process. Their joint interactions is also left to be very flexible allowing ut and vt to be correlated

at all leads and lags and similarly for the interactions bwteen qt and the remaining variables. It

is naturally understood that the associated long run variances of those processes are positive.

In this sense the above setting is at least as flexible as the well known linear cointegration

model formulated in triangular form allowing for both serial correlation and endogeneity. Note

also that the strictly stationary and strong mixing nature of uqt also implies that the indicator

function series Irt are strictly stationary and strong mixing with the same mixing coefficients.

Assumption A(ii) is concerned with the density of qt and is required so as to ensure that

there are observations in each bin. Since our estimation methodology requires fitting a least
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squares line within each bin of length |Hr| = h it is understood throughout this paper that

for estimability purposes there are enough observations falling within each bin. Note however

that we do not impose any smoothness conditions on the density of q. This is in contrast with

other methods that have been used in the literature (e.g. kernel smoothing via local linear

regression). Assumption (iii) requires the support of q to be compact. More specifically we

require q to be bounded from below and above. In practice and throughout our simulations we

form the support of qt by taking the range of a top (say 0.9) and bottom (say 0.1) quantile.

Finally, the differentiability of the fi(q)
′s will allow us to use their local Taylor expansions at a

point q within each bin.

We are now in a position to state our main result which establishes the consistency of our

piecewise local linear estimator. It is summarised in the following Proposition.

Proposition 1. Under Assumptions A and B, as T → ∞ and if Th → ∞ and Th3/2 → 0 as

h→ 0 we have (f̂0(q)− f0(q)) = Op(1/
√
Th) and (f̂1(q)− f1(q)) = Op(1/T

√
h).

The above proposition has focused on the consistency of our proposed estimator under a setting

that allows a great degree of generality in the dynamics linking (1) and (2). We note that the

slope function converges at a faster rate than the intercept function (i.e. T
√
h versus

√
Th). This

is directly analogous to the standard linear cointegration setting in which the slope converges

at rate T while the intercept converges at the slower
√
T rate. Our convergence rates conform

with related studies that explored the use of functional coefficients in unit root settings using

kernel smoothing techniques (Juhl (2006), Xiao (2009)).

4 Finite Sample Analysis

Our goal here is to illustrate the behaviour of our piecewise local linear estimators via a series of

simulation experiments. We will consider five functional forms including one that violates our

differentiability assumption in A(iv). The stochastic structure of our DGPs will be sufficiently

general to allow for the presence of endogeneity and a rich dynamic structure for the errors

driving xt. Specifically, our DGP is given by

yt = f0(qt−1) + f1(qt−1) xt + ut

xt = xt−1 + vt

ut = ρuut−1 + eut

vt = ρvvt−1 + evt

qt = ρqqt−1 + eqqt. (5)

Letting zt = (eut, evt, eqt)
′ and Σz = E[ztz

′
t], we use
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Σz =

 1 σuv σuq

σuv 1 σvq

σuq σqv 1


for the covariance structure of the random disturbances. Our chosen covariance matrix param-

eterisation allows qt to be contemporaneously correlated with the shocks to yt and throughout

all our experiments we set {σuv, σuq, σvq} = {−0.5, 0.5, 0.5}.

The range of possible functional coefficients we consider for either the intercept or the slope

functions is given by

A : f(q) = 0.3− 0.5 e−1.25q
2

B : f(q) =
0.5

1 + e−4q
− 0.75

C : f(q) = 0.25 e−q
2

D : f(q) = 1 + 2(q > 0.5)

E : f(q) = (1.5 + 0.6q) e−0.5(0.5q−1.5)
2

(6)

thus covering a very wide range of shapes including for illustration purposes a threshold type

function which violates our differentiability assumption. Following standard practice in the

functional coefficient literature, the quality of our estimators will be assessed via the computation

of the root MSE defined as follows

RMSEi =

√√√√1

k

k∑
r=1

(f̂i(qr)− fi(qr))2 i = 0, 1 (7)

for some qr falling within each bin, say the midpoint (note that since we operate under piece-

wise linearity the location at which we evaluate the function within the bin does not affect

its value). All our experiments use NID(0, 1) variables for the random disturbances zt while

setting {ρu, ρv, ρq} = {0.25, 0.25, 0.25} thus allowing both serial correlation and endogeneity.

Before proceeding with our simulations we give a snapshot of the performance of our es-

timators by displaying plots of single realisation based f̂i(q)
′s for i = 0, 1 together with their

true counterparts. Figure 1 below presents the plots of the functions corresponding to our for-

mulations in A-E across samples of size T=500 and T=2000. The corresponding choice for the

number of bins was k=50 and k=100.

Figure 1: Piecewise Local Linear Estimation under T=500 and T=2000
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The above plots suggest that f̂1(q) displays a good ability to trace its true counterpart f1(q)

along the chosen domain. Interestingly, our estimator also appears to match its true counter-

part closely under scenario D when the chosen functional form has a kink. At this stage it is

worth recalling that these figures have been obtained allowing for both serial correlation and

endogeneity in the underlying dynamics.

Unlike f̂1(q) however, the estimator of f0(q) appears to perform poorly overall especially

when the sample size is small. This is not unexpected and stems from the slow convergence of

the estimator relative to that of f̂1(q) as well as its large variance. Regardless of the sample size

the plots make clear the fact that the variance of f̂0(q) is substantially larger than that of f̂1(q).

We next aim to highlight more formally the consistency properties of our estimators by

documenting the progression of the corresponding RMSEs as the sample size and associated

bin number is allowed to increase. Results across a selective set of scenarios are summarised in

Table 1 below which displays simulated averages of (7) across N=2000 Monte-Carlo replications.

The rows labelled PLL correspond to our piecewise local linear estimator while the rows labelled

KER are based on a Kernel estimation as described in Xiao (2009) and using a Gaussian Kernel

with h = 1/k (the number of bins associated with each sample size is denoted k).

Table 1. RMSE of Estimators under Serial Correlation and Endogeneity

T = 250 T = 500 T = 1000 T = 2000 T = 250 T = 500 T = 1000 T = 2000

k = 40 k = 70 k = 110 k = 160 k = 40 k = 70 k = 110 k = 160

f̂0(q) f̂1(q)

A PLL 0.879 0.893 0.799 0.710 0.081 0.056 0.036 0.023

KER 9.838 2.442 1.317 0.626 0.840 1.463 0.071 0.021

B PLL 0.893 0.860 0.800 0.694 0.079 0.054 0.037 0.025

KER 2.607 7.092 1.368 0.583 0.301 1.132 0.085 0.021

C PLL 0.895 0.843 0.769 0.696 0.081 0.055 0.035 0.022

KER 3.086 8.205 1.417 0.886 0.284 0.408 0.058 0.039

D PLL 2.010 2.624 2.683 1.883 0.177 0.139 0.098 0.069

KER 4.866 3.737 1.808 1.791 0.401 0.297 0.146 0.101

E PLL 0.927 0.914 0.805 0.701 0.082 0.055 0.036 0.022

KER 8.692 7.462 5.348 2.156 0.520 0.385 0.141 0.039

Across all functional forms we note a clear decline in the PLL based RMSEs corresponding to

f̂1(q) as T and k are allowed to increase. Interestingly and with the exception of scenario D which

is ruled out by our assumptions the average RMSE figures are also very similar across T and k.

A suitable choice for h or k is an important topic in its own right and merits further research.

For our purpose our choice was guided by the requirement that Th3/2 → 0 which gave us a rough

benchmark for setting k but we have also repeated the above experiment across different choices

of k and results remained very much similar. As expected from Proposition 1, the slope functions
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see their RMSEs decline substantially faster than their intercept counterparts. Looking at the

RMSE figures corresponing to f̂0(q) we note their tendency to decline very slowly.

Our comparisons with an alternative Kernel based estimator also suggest that our method

works well. Naturally, since alternative Kernels or functional forms may produce different finite

sample outcomes it would be misleading to argue that our PLL approach dominates alterna-

tive approaches. Indeed our key goal here was to introduce a simple approach to estimating

functional coefficients that displays good finite sample properties rather than proposing an al-

ternative methodology that aims to dominate existing approaches.

5 Conclusions

This paper introduced the concept of functional cointegration and proposed a novel method of

estimating the unknown functional coefficients linking the variables of interest under a nonsta-

tionary unit root setting. Our method is based on a simple binning idea and is shown to perform

well asymptotically as well as in finite samples. Operating within a highly general probabilistic

setting that allows for both serial correlation and endogeneity we established the consistency of

our function estimators. Since developing formal inferences was beyond the scope of this paper,

in future work it will be interesting to use our results to obtain the properties of test statistics

that could be used to tests hypotheses such as the null of a linearly cointegrated model versus

our functional specification.
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APPENDIX

LEMMA 1: As h→ 0 (i) E[Irt−1]/h→ gq(q), (ii) E[Irt−1(qt−1 − q)m] = o(hm+1).

PROOF: We focus on (ii) and evaluate the expression at some q = qr. We have

|E[(qt−1 − qr)mIrt−1]| =

∣∣∣∣∫
Hr

(q − qr)mgq(q)dq
∣∣∣∣

≤
∫
Hr

|q − qr|mgq(q)dq

≤ hm
∫
Hr

gq(q)dq = const ∗ hm+1 (8)

and the result follows.

PROOF OF PROPOSITION 1: Given xt, yt, qt and the known bin cutoff locations the least

squares estimators of the intercept β0r and slope parameter β1r of the regression line within each

bin can be formulated as

β̂0r = yr − β̂1rxr

β̂1r =

∑
(xt − xr)Irt−1yt∑
(xt − xr)2Irt−1

(9)

with xr =
∑
xtIrt−1/

∑
Irt−1 and yr =

∑
ytIrt−1/

∑
Irt−1. Next, using yt = f0(qt−1) +

f1(qt−1)xt + ut, taking a first order Taylor expansion of the unknown coefficients around some

q ∈ Hr

fi(qt−1) ≈ fi(q) + f ′i(q)(qt−1 − q) + o(h2)

for i = 0, 1 and ignoring terms that are o(h2) we can rewrite β̂1r as

β̂1r − f1(q) =

∑
(xt − xr)Irt−1[f0(qt−1) + f1(qt−1)xt]∑

(xt − xr)2Irt−1
+

∑
(xt − xr)Irt−1ut∑
(xt − xr)2Irt−1

= f ′0(q)

∑
(xt − xr)(qt−1 − q)Irt−1∑

(xt − xr)2Irt−1
+ f ′1(q)

∑
xt(xt − xr)(qt−1 − q)Irt−1∑

(xt − xr)2Irt−1

+

∑
(xt − xr)Irt−1ut∑
(xt − xr)2Irt−1

. (10)

It is now also convenient to reformulate the above as

T
√
h(β̂1r − f1(q)) = f ′0(q)

(∑
(xt − xr)(qt−1 − q)Irt−1/T 2h∑

(xt − xr)2Irt−1/T 2h

)
T
√
h+

f ′1(q)

(∑
xt(xt − xr)(qt−1 − q)Irt−1/T 2h∑

(xt − xr)2Irt−1/T 2h

)
T
√
h+∑

(xt − xr)Irt−1ut/Th∑
(xt − xr)2Irt−1/T 2h

≡ T
√
hf ′0(q)Ar + T

√
h f ′1(q)Br + Cr (11)
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and the result follows by showing that T
√
h Ar and T

√
h Br are asymptotically negligible when

Th3/2 → 0 while Cr is Op(1). Note that the denominators of the above are always bounded in
distribution as Th→∞, since∣∣∣∣∑xt

2Irt−1/T
2h− gq(q)

∫
B2

v(s)

∣∣∣∣
≤

∣∣∣∑xt
2Irt−1/T

2h−
∑

B2
v(t/T )Irt−1/Th

∣∣∣+

∣∣∣∣∑B2
v(t/T )Irt−1/Th− gq(q)

∫
B2

v(s)

∣∣∣∣
≤ sup

t
|Irt−1/h|

∣∣∣∑x2
t/T

2 −
∑

B2
v(t/T )/T

∣∣∣+

(
sup

s∈[0,1]
Bv(s) + 1

)2 ∣∣∣∑ Irt−1/Th− gq(q)
∣∣∣ . (12)

Using Markov inequality Pr (supt |Irt−1/h| > M) ≤ suptE (Irt−1) /Mh ≤ sup gq(q)/M → 0 as

M →∞ therefore Irt−1/h is uniformly bounded. Our assumptions also ensure that
∑
xt

2/T 2 ⇒∫ 1

0
B2
v (see Phillips (1987)) and finally the asymptotic negligibility of the last term in (12) as

Th→∞ follows from a suitable law of large numbers for strong mixing processes (e.g Hansen

(1991, Corollary 4). See also Hansen (2008, Theorem 1)). Similarly for xr.

We have for q ∈ Hr, |qt−1 − q| < h and f ′1(q) bounded,

T
√
h |Br| ≤ T

√
h

∑
|xt(xt − xr)(qt−1 − q)| Irt−1∑

(xt − xr)2Irt−1

≤ Th3/2
∑
|xt(xt − xr)| Irt−1∑
(xt − xr)2Irt−1

→ 0 (13)

since Th3/2 → 0. The asymptotic negligibility of T
√
h Ar follows along identical lines using the

fact that

T
√
h
∣∣∣∑(xt − xr)(qt−1 − q)Irt−1/T 2h

∣∣∣ ≤ √
Th3/2 max

t≤T

∣∣∣∣ xt√T
∣∣∣∣∑ Irt−1/Th

≤
√
Th3/2

(
sup
s∈[0,1]

Bv(s) + 1

)∑
Irt−1/Th (14)

since as before
(
sups∈[0,1]Bv(s) + 1

)∑
Irt−1/Th is bounded T

√
h Ar → 0.

Finally, for Cr, using xt = xt−1 + vt we write∑
(xt − xr)Irt−1ut

T
√
h

=

∑
xt−1Irt−1ut

T
√
h

+

∑
utvtIrt−1

T
√
h

− xr
∑
utIrt−1√
Th

. (15)

Notice that Pr
(∣∣∣∑utvtIrt−1/T

√
h
∣∣∣ > ε

)
≤ 1

Th
E[u2tv

2
t Irt−1] → 0. Same goes for the term∑

utIrt−1/
√
Th and xr is bounded by

(
sups∈[0,1]Bv(s) + 1

)
hence the third term is Op(1).

So we can concentrate on
∑
xt−1utIrt−1/T

√
h. We write as before∣∣∣∣ 1

T
√
h

∑
xt−1utIrt−1

∣∣∣∣ ≤
(

sup
s∈[0,1]

Bv(s) + 1

)
1√
Th

∑
|ut|Irt−1 = Op(1) (16)
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and hence leading to the required result.

Proceeding along the same lines for β̂0r and using β̂1r = f1(q) +Op(1/T
√
h) we write

β̂0r − f0(q) = f ′0(q)

∑
(qt−1 − q)Irt−1∑

Irt−1
+ f ′1(q)

∑
(qt−1 − q)xtIrt−1∑

Irt−1
+∑

utIrt−1∑
Irt−1

− xrOp(
1

T
√
h

). (17)

Applying suitable normalisations we reformulate (17) as

√
Th(β̂0r − f0(q)) = f ′0(q)

(∑
(qt−1 − q)Irt−1∑

Irt−1

)√
Th+

(
f ′1(q)

∑
(qt−1 − q)xtIrt−1∑

Irt−1

)√
Th+∑

utIrt−1/
√
Th∑

Irt−1/Th
+Op(1). (18)

Proceeding as above it is again straightforward to observe that under
√
Th3/2 → 0 the first two

terms in the right hand side of (18) are asymptotically negligible while the third term is Op(1)

by our Assumptions A.
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